Representations of tensor categories coming from quantum linear spaces

نویسنده

  • Martín Mombelli
چکیده

Exact indecomposable module categories over the tensor category of representations of Hopf algebras that are liftings of quantum linear spaces are classified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$

‎We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$‎. ‎We specialize the indeterminates used in defining these representations to non zero complex numbers‎. ‎We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$‎. ‎We then determine necessary and sufficient conditions that guarantee the irreducibility of th...

متن کامل

POSITIVITY AND THE CANONICAL BASIS OF TENSOR PRODUCTS OF FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF QUANTUM sl(k)

In a categorification of tensor products of fundamental representations of quantum sl(k) via highest weight categories, the indecomposable tilting modules descend to the canonical basis. Projective functors map tilting modules to tilting modules implying the coefficients of the canonical basis of tensor products of finite dimensional, irreducible representations under the action of the Chevalle...

متن کامل

m at h . Q A ] 2 S ep 2 00 5 TENSOR CATEGORIES AND VACANT DOUBLE GROUPOIDS

We show that fusion categories Rep(kστT ) of representations of the weak Hopf algebra coming from a vacant double groupoid T and a pair (σ, τ ) of compatible 2-cocyles are group-theoretical.

متن کامل

Tensor Structures Arising from Affine Lie Algebras

This paper is a part of the series [KL]; however, it can be read independently of the first two parts. In [D3], Drinfeld proved the existence of an equivalence between a tensor category of representations of a quantum group over C[[ ro]] and a tensor category of representations of an undeformed enveloping algebra over C[[ro]] , in which the associativity constraints are given by the Knizhnik-Za...

متن کامل

Intrinsic Characterizations of Orthogonal Separability for Natural Hamiltonians with Scalar Potentials on Pseudo-Riemannian Spaces

Orthogonal separability of finite-dimensional Hamiltonians is characterized by using various geometrical concepts, including Killing tensors, moving frames, the Nijenhuis tensor, bi-Hamiltonian and quasi-bi-Hamiltonian representations. In addition, a complete classification of separable metrics defined in two-dimensional locally flat Lorenzian spaces is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. London Math. Society

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2011